Search results for "Particle Physics - Cosmology Connection"

showing 8 items of 8 documents

Late decaying 2-component dark matter scenario as an explanation of the AMS-02 positron excess

2016

The long standing anomaly in the positron flux as measured by the PAMELA and AMS-02 experiments could potentially be explained by dark matter (DM) annihilations. This scenario typically requires a large "boost factor" to be consistent with a thermal relic dark matter candidate produced via freeze-out. However, such an explanation is disfavored by constraints from CMB observations on energy deposition during the epoch of recombination. We discuss a scenario called late-decaying two-component dark matter (LD2DM), where the entire DM consists of two semi-degenerate species. Within this framework, the heavier species is produced as a thermal relic in the early universe and decays to the lighter…

Structure formationCosmology and Nongalactic Astrophysics (astro-ph.CO)Satellitesmedia_common.quotation_subjectPhysics beyond the Standard ModelCosmic microwave backgroundDark matterCosmic background radiationFOS: Physical sciencesAnnihilationAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsDark Matter TheoryGalactic Cosmic-Rays01 natural sciencesCosmic Ray ExperimentsParticle Physics - Cosmology ConnectionHigh Energy Physics - Phenomenology (hep-ph)AbundanceReionization0103 physical sciencesGamma010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsAstronomy and AstrophysicsGalaxiesUniverseHaloesHigh Energy Physics - PhenomenologySolar ModulationConstraintsDark AgesMinimumAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsIndraStra Global
researchProduct

First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

PHOTINOAstrophysicsMASSIVE PARTICLES01 natural sciencesLIMITSDirect searchCANDIDATESPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilationdark matter detectors[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsAstrophysics::Instrumentation and Methods for AstrophysicsCAPTURELIGHTparticle physics - cosmology connectionWeakly interacting massive particlesneutrino experiments; particle physics - cosmology connection; dark matter detectors; supersymmetry and cosmologyFísica nuclearNeutrinosupersymmetry andAstrophysics - High Energy Astrophysical PhenomenaCosmology connectionsupersymmetry and cosmologyFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Supersymmetry and cosmologydark matter detectorAstrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeDark matterFOS: Physical sciencesddc:500.2neutrino experimentsSEARCH0103 physical sciencesDETECTORS010306 general physicsSelection (genetic algorithm)Dark matter detectors010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsNeutrino experimentsFISICA APLICADAParticle physics - cosmology connectionneutrino experimentHigh Energy Physics::ExperimentcosmologySYSTEM
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Observational signatures of Higgs inflation

2016

We investigate the dependency of Higgs inflation on the non-renormalisable matching between the low energy Standard Model limit and the inflationary regime at high energies. We show that for the top mass range $m_t \gtrsim 171.8$ GeV the scenario robustly predicts the spectral index $n_s \simeq 0.97$ and the tensor-to-scalar ratio $r\simeq 0.003$. The matching is however non-trivial, even the best-fit values $m_h=125.09$ GeV and $m_t=173.21$ GeV require a jump $\delta \lambda \sim 0.01$ in the Higgs coupling below the inflationary scale. For $m_t\lesssim 171.8$ GeV, the matching may generate a feature in the inflationary potential. In this case the predicted values of $n_s$ and $r$ vary but…

Particle physicsMatching (statistics)Cosmology and Nongalactic Astrophysics (astro-ph.CO)STANDARD MODELFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesphysics of the early universeinflationELECTROWEAK VACUUM010306 general physicscosmology of theories beyond the SMBosonInflation (cosmology)PhysicsSpectral index010308 nuclear & particles physicsINDUCED GRAVITY INFLATIONHigh Energy Physics::PhenomenologySpectral densityBOSONAstronomy and Astrophysics115 Astronomy Space scienceHigh Energy Physics - Phenomenologyparticle physics - cosmology connectionJumpHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A model for dark matter, naturalness and a complete gauge unification

2015

We consider dark matter in a minimal extension of the Standard Model (SM) which breaks electroweak symmetry dynamically and leads to a complete unification of the SM and technicolor coupling constants. The unification scale is determined to be $M_{\rm U} \approx 2.2 \times 10^{15}$ GeV and the unified coupling $\alpha_{\rm U} \approx 0.0304$. Moreover, unification strongly suggest that the technicolor sector of the model must become strong at the scale of ${\cal O}$(TeV). The model also contains a tightly constrained sector of mixing neutral fields stabilized by a discrete symmetry. We find the lightest of these states can be DM with a mass in the range $m_{\rm DM} \approx 30-800$ GeV. We f…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesTechnicolorParameter space01 natural sciences7. Clean energyStandard ModelHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsCoupling constantPhysicsdark matter theory010308 nuclear & particles physicsdark matter experimentsElectroweak interactionHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsCoupling (probability)High Energy Physics - Phenomenologyparticle physics - cosmology connectionHigh Energy Physics::ExperimentDiscrete symmetryAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

A White Paper on keV sterile neutrino Dark Matter

2017

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

AstrofísicaSterile neutrinocosmological modelCold dark mattercosmological neutrinosPhysics beyond the Standard Model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matter theory01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)White paperHigh Energy Physics - Phenomenology (hep-ph)X-RAY-EMISSIONMETALLIC MAGNETIC CALORIMETERSQUANTUM-FIELD THEORY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: dark matterCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection010303 astronomy & astrophysicsPhysicsdark matter theorynew physicsDOUBLE-BETA-DECAYhep-phneutrino: sterileCosmological neutrinos; Dark matter experiments; Dark matter theory; Particle physics - cosmology connection; Astronomy and AstrophysicsNuclear & Particles PhysicsHigh Energy Physics - Phenomenologyneutrino: detectorDark matter experimentsparticle physics - cosmology connectionastro-ph.COMILKY-WAY SATELLITESCosmological neutrinos3.5 KEV LINENeutrinoParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterLY-ALPHA FORESTreviewFOS: Physical sciencesContext (language use)neutrino: productionX-raySettore FIS/05 - Astronomia e Astrofisica[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]RIGHT-HANDED NEUTRINOS0103 physical sciencesAstronomical And Space Sciencesnumerical calculationsDark matter experimentXMM-NEWTON OBSERVATIONSneutrino: modelParticle Physics - PhenomenologyDWARF SPHEROIDAL GALAXYCosmologia010308 nuclear & particles physicshep-exdark matter experimentsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAtomic Molecular Nuclear Particle And Plasma PhysicsCosmological neutrinoAstrophysics - Astrophysics of Galaxies13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Particle physics - cosmology connection[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentneutrino: oscillation[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Journal of Cosmology and Astroparticle Physics
researchProduct

Renormalisation group improvement in the stochastic formalism

2019

We investigate compatibility between the stochastic infrared (IR) resummation of light test fields on inflationary spacetimes and renormalisation group running of the ultra-violet (UV) physics. Using the Wilsonian approach, we derive improved stochastic Langevin and Fokker-Planck equations which consistently include the renormalisation group effects. With the exception of stationary solutions, these differ from the naive approach of simply replacing the classical potential in the standard stochastic equations with the renormalisation group improved potential. Using this new formalism, we exemplify the IR dynamics with the Yukawa theory during inflation, illustrating the differences between …

High Energy Physics - TheoryGAUGED NJL-MODELgr-qcHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)PROPAGATORFLATNESSHORIZON0201 Astronomical and Space Sciences0103 physical sciencesphysics of the early universeinflationINFLATIONARY UNIVERSE SCENARIOResummationMathematical physicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicshep-thYukawa potentialhep-phAstronomy and AstrophysicsEXPANSIONNuclear & Particles Physicsquantum field theory on curved spaceFormalism (philosophy of mathematics)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)particle physics - cosmology connectionINTERACTING SCALAR FIELDVACUUMPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsPHASE-TRANSITIONGENERATION
researchProduct

Do metric fluctuations affect the Higgs dynamics during inflation?

2017

We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by $\mathcal{O}(10^{-7})$. They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann--Lema\^itre--Robertson--Walker metric, where the Higgs-curvature coupling …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcSTANDARD MODELFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGeneral Relativity and Quantum Cosmology0202 Atomic Molecular Nuclear Particle And Plasma PhysicsHigh Energy Physics - Phenomenology (hep-ph)EINSTEIN FRAMESELECTROWEAK VACUUMFIELDquantumfield theory on curved spaceScience & TechnologyPhysicsHigh Energy Physics::Phenomenologyhep-phNuclear & Particles PhysicsJORDANHigh Energy Physics - Phenomenology0201 Astronomical And Space SciencesMETASTABILITYparticle physics - cosmology connectionPhysical Sciencesastro-ph.COHigh Energy Physics::ExperimentEQUIVALENCEAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct